skip to main content


Search for: All records

Creators/Authors contains: "Li, Yanxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanocellulose, which can be derived from any cellulosic biomass, has emerged as an appealing nanoscale scaffold to develop inorganic–organic nanocomposites for a wide range of applications. In this study, titanium dioxide (TiO 2 ) nanocrystals were synthesized in the cellulose nanocrystal (CNC) scaffold using a simple approach, i.e. , hydrolysis of a titanium oxysulfate precursor in a CNC suspension at low temperature. The resulting TiO 2 nanoparticles exhibited a narrow size range between 3 and 5 nm, uniformly distributed on and strongly adhered to the CNC surface. The structure of the resulting nanocomposite was evaluated by transmission electron microscopy (TEM) and X-ray diffraction (XRD) methods. The growth mechanism of TiO 2 nanocrystals in the CNC scaffold was also investigated by solution small-angle X-ray scattering (SAXS), where the results suggested the mineralization process could be described by the Lifshitz–Slyozov–Wagner theory for Ostwald ripening. The demonstrated TiO 2 /CNC nanocomposite system exhibited excellent performance in dye degradation and antibacterial activity, suitable for a wide range of environmental remediation applications. 
    more » « less
  2. Cellulose is a natural polymer that is widely used in daily life, but it is susceptible to microorganism growth. In this study, a simple sol–gel technique was utilized to incorporate the cellulose scaffold with Ag/TiO2 nanoparticles. The morphology and crystal structure of the as-prepared Ag/TiO2/cellulose composite film were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. Antibacterial tests involving the use of Escherichia coli (E. coli) were carried out under dark and UV-light conditions to evaluate the efficiency of the Ag/TiO2/cellulose composite film in comparison with pristine cellulose paper and TiO2/cellulose composite film. The results indicated that the antibacterial activity of the Ag/TiO2/cellulose composite film outperformed all other samples, where the Ag content of 0.030 wt% could inhibit more than 99% of E. coli. This study suggests that finely dispersed nanocale Ag/TiO2 particles in the cellulose scaffold were effective at slowing down bacterial growth, and the mechanisms of this are also discussed. 
    more » « less